
  

Putting stuff on maps 101



  

Math vs Maps

http://www.qgis.org

Spatial Capabilities

Numerical Algorithms



  

Prerequisites

● Familiarity with Python and Numpy
● Familiarity with Linux
● Code is platform independent, but tutorial 

designed for a Debian/Ubuntu/Mint system.
● Dependencies are: python, python-numpy, 

python-gdal and qgis



  

Outline

● Learn to Read and Write (spatial data)
● View and overlay spatial data
● Geoprocessing exercises

Note for this tutorial: 

All coordinates in geographic coordinates in 
datum WGS84.

Tools will work with any spatial reference. 



  

Spatial Information Formats

● Raster Data (Grids)
● Ascii format
● GeoTiff

● Vector Data (Points, Lines, Polygons)
● Shape format
● KML (Google Earth)



  

Raster Example



  

Vector Example



  

Some GIS tools

● Quantum GIS: Analysis and Visualisation 
● GDAL (& Python Bindings): Geographic Data 

Abstraction Library (Frank Warmerdam)

GDAL doesn't really provide data in a 
Python/numpy friendly for, so we wrote wrappers 
around GDAL*:
https://github.com/AIFDR/inasafe/tree/master/safe/storage

* Also included in the tutorial material.



  

Writing spatial raster data

R = Raster(data=A, geotransform=G)

R.write_to_file(<filename>.tif)   # or .asc

where

A: 2D numpy array

G: GDAL geotransform (see next slide) defining

     where on earth the grid will be situated. 



  

GDAL Geotransform
The affine geotransform consists of six coefficients which map grid cells into georeferenced 
space:

● Top left x coordinate
● W-E pixel resolution, 
● Rotation (always 0 if north is up)
● Top left y coordinate
● Rotation (always 0 if north is up)
● N-S pixel resolution

Example (in geographic coordinates) with upper left corner at the IIT and a pixel resolution of 
0.008333, 0.008333  (approx 1km x 1km):

[72.91645, 0.008333, 0, 19.12543, 0, -0.008333]



  

Reading spatial raster data
R = read_layer(<filename>.asc)   (or .tif)

A = R.get_data()  # Numpy array

G = R.get_geotransform()  # GDAL ref

Wrapper can also do

R.get_geometry(): The grid axes - latitudes and longitudes

R.get_resolution()

R.get_bounding_box()

R.get_nodata_value()  # Often -9999

R.get_extrema()  # Ignoring NODATA value



  

Writing spatial vector data

V = Vector(geometry, attributes) 

V.write_to_file(<filename>.shp)   # or .kml

Geometry: List of points, lines or polygons

Attributes: List of dictionaries of attribute names 
and values

Exercise 1 will play with this



  

Reading spatial vector data

V = read_layer(<filename>.asc)   (or .tif)

A = V.get_data()  # Attributes

G = V.get_geometry()  # Point, line or polygon



  

Install dependencies

For Debian/Ubuntu/Mint etc:

sudo aptget install qgis 
pythonnumpy pythongdal

For Windows and Mac it works too, but I don't 
know the installation commands



  

Get The Source

● Open a terminal
● Download tarball from scipy website and unpack

Test the installation
● cd source
● python test_installation.py

To run exercises (from tutorial root):
● export PYTHONPATH=. (Linux)
● Set PYTHONPATH=. (Windows)
● python exercises/exercise1a.py



  

Exercise 1 (a,b,c)

● Read and write spatial data.
● Raster data represented as numpy 2d array
● Vector data represented as 

● List of attributes (on dictionary per feature)
● List of geometries (point, lines or polygons) 



  

QGIS Screenshot of exercise 1 Data



  

Exercise 2 – polygon area

Paul Bourke, 1988



  

Exercise 3 – use numpy

● If the loop is written in Python it'll be slow.
● Using numpy vector operations can speed 

things up several orders of magnitude.



  

Exercise 4 & 5 – Polygon Centroids 



  

Exercise 5 result
Calculated centroids stored, please review with qgis:
qgis ../spatial_test_data/kecamatan_geo.shp 
calculated_centroids_kecamatan_geo.shp 
../spatial_test_data/kecamatan_geo_centroids.shp
Test 1 passed

Calculated centroids stored, please review with qgis:
qgis ../spatial_test_data/OSM_subset.shp 
calculated_centroids_OSM_subset.shp 
../spatial_test_data/OSM_subset_centroids.shp
Traceback (most recent call last):
  File "exercises/exercise5.py", line 179, in <module>
    assert numpy.allclose(c_geometry, r_geometry, rtol=1.0e9), msg
AssertionError: Centroids of OSM_subset.shp were not correct



  



  

Hower not good for smaller scales



  

Solution is Normalisation

# Normalise to ensure numerical accurracy.
# This requirement in backed by tests in test_io.py and without it
# centroids at building footprint level may get shifted outside the
# polygon!
P_origin = numpy.amin(P, axis=0)
P = P - P_origin

# Translate back to real location
C = numpy.array([Cx, Cy]) + P_origin
return C

# Calculate centroids as usual
    



  

After Normalisation



  

Exercise 6 – just taking a look

● Numpy implementation of bi-linear interpolation
● Taking NaN into account



  

Thank you very much!

● The code you have seen was built for the 
InaSAFE project: www.inasafe.org

● Please have a look at all of it at: 
https://github.com/AIFDR/inasafe
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