

Putting stuff on maps 101

Math vs Maps

http://www.qgis.org

Spatial Capabilities

Numerical Algorithms

Prerequisites

● Familiarity with Python and Numpy
● Familiarity with Linux
● Code is platform independent, but tutorial

designed for a Debian/Ubuntu/Mint system.
● Dependencies are: python, python-numpy,

python-gdal and qgis

Outline

● Learn to Read and Write (spatial data)
● View and overlay spatial data
● Geoprocessing exercises

Note for this tutorial:

All coordinates in geographic coordinates in
datum WGS84.

Tools will work with any spatial reference.

Spatial Information Formats

● Raster Data (Grids)
● Ascii format
● GeoTiff

● Vector Data (Points, Lines, Polygons)
● Shape format
● KML (Google Earth)

Raster Example

Vector Example

Some GIS tools

● Quantum GIS: Analysis and Visualisation
● GDAL (& Python Bindings): Geographic Data

Abstraction Library (Frank Warmerdam)

GDAL doesn't really provide data in a
Python/numpy friendly for, so we wrote wrappers
around GDAL*:
https://github.com/AIFDR/inasafe/tree/master/safe/storage

* Also included in the tutorial material.

Writing spatial raster data

R = Raster(data=A, geotransform=G)

R.write_to_file(<filename>.tif) # or .asc

where

A: 2D numpy array

G: GDAL geotransform (see next slide) defining

 where on earth the grid will be situated.

GDAL Geotransform
The affine geotransform consists of six coefficients which map grid cells into georeferenced
space:

● Top left x coordinate
● W-E pixel resolution,
● Rotation (always 0 if north is up)
● Top left y coordinate
● Rotation (always 0 if north is up)
● N-S pixel resolution

Example (in geographic coordinates) with upper left corner at the IIT and a pixel resolution of
0.008333, 0.008333 (approx 1km x 1km):

[72.91645, 0.008333, 0, 19.12543, 0, -0.008333]

Reading spatial raster data
R = read_layer(<filename>.asc) (or .tif)

A = R.get_data() # Numpy array

G = R.get_geotransform() # GDAL ref

Wrapper can also do

R.get_geometry(): The grid axes - latitudes and longitudes

R.get_resolution()

R.get_bounding_box()

R.get_nodata_value() # Often -9999

R.get_extrema() # Ignoring NODATA value

Writing spatial vector data

V = Vector(geometry, attributes)

V.write_to_file(<filename>.shp) # or .kml

Geometry: List of points, lines or polygons

Attributes: List of dictionaries of attribute names
and values

Exercise 1 will play with this

Reading spatial vector data

V = read_layer(<filename>.asc) (or .tif)

A = V.get_data() # Attributes

G = V.get_geometry() # Point, line or polygon

Install dependencies

For Debian/Ubuntu/Mint etc:

sudo aptget install qgis
pythonnumpy pythongdal

For Windows and Mac it works too, but I don't
know the installation commands

Get The Source

● Open a terminal
● Download tarball from scipy website and unpack

Test the installation
● cd source
● python test_installation.py

To run exercises (from tutorial root):
● export PYTHONPATH=. (Linux)
● Set PYTHONPATH=. (Windows)
● python exercises/exercise1a.py

Exercise 1 (a,b,c)

● Read and write spatial data.
● Raster data represented as numpy 2d array
● Vector data represented as

● List of attributes (on dictionary per feature)
● List of geometries (point, lines or polygons)

QGIS Screenshot of exercise 1 Data

Exercise 2 – polygon area

Paul Bourke, 1988

Exercise 3 – use numpy

● If the loop is written in Python it'll be slow.
● Using numpy vector operations can speed

things up several orders of magnitude.

Exercise 4 & 5 – Polygon Centroids

Exercise 5 result
Calculated centroids stored, please review with qgis:
qgis ../spatial_test_data/kecamatan_geo.shp
calculated_centroids_kecamatan_geo.shp
../spatial_test_data/kecamatan_geo_centroids.shp
Test 1 passed

Calculated centroids stored, please review with qgis:
qgis ../spatial_test_data/OSM_subset.shp
calculated_centroids_OSM_subset.shp
../spatial_test_data/OSM_subset_centroids.shp
Traceback (most recent call last):
 File "exercises/exercise5.py", line 179, in <module>
 assert numpy.allclose(c_geometry, r_geometry, rtol=1.0e9), msg
AssertionError: Centroids of OSM_subset.shp were not correct

Hower not good for smaller scales

Solution is Normalisation

Normalise to ensure numerical accurracy.
This requirement in backed by tests in test_io.py and without it
centroids at building footprint level may get shifted outside the
polygon!
P_origin = numpy.amin(P, axis=0)
P = P - P_origin

Translate back to real location
C = numpy.array([Cx, Cy]) + P_origin
return C

Calculate centroids as usual

After Normalisation

Exercise 6 – just taking a look

● Numpy implementation of bi-linear interpolation
● Taking NaN into account

Thank you very much!

● The code you have seen was built for the
InaSAFE project: www.inasafe.org

● Please have a look at all of it at:
https://github.com/AIFDR/inasafe

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

