SymEngine:
A Fast Symbolic Manipulation Library

Ondfej Certik, Isuru Fernando, Thilina Rathnayake, Abhinav
Agarwal, Sumith Kulal, Abinash Meher, Rajith Vidanaarachchi,
Shikhar Jaiswal, Ranjith Kumar

September 4, 2017



Outline

SymEngine

>

Introduction

Features

Demo (Python, Ruby, Julia)

Why C++, how to write safe code
Internals of SymEngine

SymEngine and SymEngine.py

Roadmap for using SymEngine in SymPy
Roadmap for using SymEngine in Sage
Roadmap for using SymEngine in PyDy

Benchmarks



Introduction
About SymEngine

» Symbolic manipulation library written in C+—+

» Thin wrappers to Python, Ruby, Julia, C and Haskell
» MIT licensed

» Started in 2012

» 46 contributors

» Runs on Linux (GCC, Clang, Intel), OS X (GCC, Clang),
Windows (MSVC, MinGW, MinGW-w64)

» Part of the SymPy organization, but the C++ library is
Python independent



Introduction

Goals

» Be the fastest symbolic manipulation library (open-source or
commercial)

» Serve as the core for SymPy and Sage, optionaly supporting
PyDy

» Serve as the default symbolic manipulation library in other
languages thanks to thin wrappers (Python, Ruby, Julia, C
and Haskell)



Choice of Language

Problem
SymPy speed is sometimes insufficient

» Handling of very large expressions

» Large calculations using small/medium size expressions

Let's Fix That
» We tried: pure Python/PyPy, Cython, C, ...

» Investigated Julia, Rust, Scala, Javascript, ...
» Chose C++



Current Features

» Core (Symbols, +, -, *, /, *¥)

» Elementary Functions (sin, cos, gamma, erf)
» Number Theory

» Differentiation, Substitution

» Matrices and Sets

» Polynomials (Piranha, Flint)

» Series Expansion

» Solvers (Polynomial and Trigonometric)

» Printing, Parsing and Code Generation

» Numeric Evaluation (Double and Arbitrary Precision)



Demo

Demo Time



Why Pure C++

» Fast in Release mode, but safe in Debug mode

» Compiler helps (not as good as Scala or Haskell, but much
better than Python)

» Just one language to learn, thus easy to maintain (as opposed
to several intertwined layers such as C + Cython + Python)

» Thin wrappers (that core developers do not need to
maintain), all functionality in C++

» Easier to create bindings to other languages like Python,
Julia, Ruby and Haskell



Why Pure C++4: Fast in Release Mode

» Allows direct memory handling (allocation, deallocation,
access)

» Allows to tweak how and when things are done
> It is possible to go to bare metal

» Allows reasonably high level abstractions (simple,
maintainable code)



Why Pure C++: Safe in Debug Mode

>

Reference counted pointers Teuchos: :RCP (from Trilinos)
Checks for dangling and null pointers (exception is raised)
No raw pointers/references (use Ptr and RCP)

Use a safe subset of C++

Few other rules, e.g. how to use Ptr and RCP properly
Possible to visually verify in a PR (pull request) review

Hopefully eventually there are plugins to Clang to check
automatically (since the rules are simple and static)

As fast as raw pointers in Release mode (but it could segfault)

Conclusion: the code cannot segfault or have undefined behavior in
Debug mode — always get an exception at runtime, or a compile
error.



Internals of SymEngine
How Add Class Works

» Add stores the various algebraic terms in a dictionary as
variable-coefficient pairs, while separately storing the constant
term of the expression

» Add uses std: :unordered map (hashtable) for the dictionary

» 2xy2 +3x%y +5 — {xy?: 2,x%y : 3}; coeff =5

» Each object is reference counted (RCP), hence very fast

implementation in Release mode



Internals of SymEngine
How Mul Class Works

» Mul stores the various algebraic terms in a dictionary as
base-exponent pairs, while separately storing the constant
coefficient of the expression

» Mul uses std: :map (red-black tree)

» 2xy? = {x:1,y:2}; coeff =2

» Each object is, like in the case of Add class, reference counted

(RCP)



Internals of SymEngine
How Pow Class Works

» Pow just stores the base and exponent as individual RCP
objects, no dictionaries are used for storage

» x® = base = x; coeff =5



Internals of SymEngine
Extensibility using Visitor Pattern

» All algorithms implemented using visitor pattern

» Algorithm is implemented in its own file, separate from the
core

» Two virtual function calls (can be implemented in third party
code or user code)

» Special version with just one virtual function call (faster, but
must be compiled as part of the SymEngine source code)

» The speed difference between the two is minor for practical
purposes



SymEngine and SymEngine.py

Designing The Interface

» SymEngine.py uses Cython's native support for C++
constructs.

» Uses Cython's libcpp module for importing bool, string, map,
vector and pair data types.

» Declares set, multiset and unordered_map directly from
C+H++'s < set > module, as Cython's libcpp.set does not
support multi-template arguments to any of them.

cdef extern from "<set>" namespace "std":
cdef cppclass set[T, U]:



SymEngine and SymEngine.py

Designing The Interface

» Additionally, maintains .pxd files with cdef extern from blocks
and (if existing) the C++ namespace name:

cdef extern from "<symengine/symbol.h>" namespace
"SymEngine":

> In these blocks, we declare SymEngine’s classes as cdef
cppclass blocks:

cdef cppclass Symbol(Basic):

» And then declare SymEngine's public names (variables,
methods and constructors):
Symbol (string name) nogil
string get_name() nogil



SymEngine and SymEngine.py

Working With SymEngine's Data Types

» Cython classes implemented for data types available in
SymEngine, and Python classes for types currently
unavailable.

» As soon as a class object is called, a SymEngine equivalent
object is created and passed to a dedicated function (c2py).

» The function takes the object and returns the corresponding
Cython or Python counterpart for usage.

» Conversely, another dedicated function (sympy2symengine)
takes a Python object and returns the SymEngine equivalent.



SymEngine and SymEngine.py

Testing The Interface

» Since specific classes are created for each data type, the
functionalities can be directly called, just as in the case of
SymPy.

» Most of the test cases derive directly from SymPy's test suite
for filtering out inconsistencies and finding the fundamental
differences.



SymPy, SymEngine and SymEngine.py

Using SymEngine in SymPy

» SymEngine will convert any SymPy object to a corresponding
SymEngine object before doing any operation

>>> from symengine import symbols, Add
>>> import sympy
>>> x = symbols("x")

>>> y = sympy.symbols("y")
>>>x +y
X + y

>>> type(x+y)
<type ’symengine.lib.symengine_wrapper.Add’>

» What if there is no corresponding SymEngine object?



SymPy, SymEngine and SymEngine.py

Using SymEngine in SymPy

» SymEngine will keep a reference to a SymPy object if there is
no corresponding SymEngine object using Python/C API.
SymEngine will use Python callbacks to evaluate the SymPy
object

>>> e = x + sympy.Mod(x, 2)
>>> assert str(e) == "x + Mod(x, 2)"
>>> assert isinstance(e, Add)

>>> f = e.subs({x : 10})
>>> assert f == 10

>>> f = e.subs({x : 2})
>>> assert f ==



SymPy, SymEngine and SymEngine.py

Using SymEngine in SymPy

» >>> from sympy.core.backend import symbols, sin, diff
» Most things can be used unmodified
» Few things are fundamentally different (e.g. SymPy stores I
as ImaginaryUnit, SymEngine has a Complex class)
» SymEngine.py accounts for this incompatibility by having a
Python class implemented for ImaginaryUnit returning I

» Singleton class also implemented in SymEngine.py to account
for SymPy’s Singleton pattern.



SymPy, SymEngine and SymEngine.py

Speeding Up - Past Strategy

» Create an old_core_api.py module, which will define the API to
the core, the implementation will just import things from the
current core.

» All client code (that is, the rest of SymPy that uses the core)
will access things from the core through old_core_api.py only.

» Each method accepts SymPy objects, converts to SymEngine,
calls SymEngine’s counterpart, and converts the result back to
SymPy. Then it validates the result by calling SymPy’s class
directly and compares the final expressions.

» Remove the validation and remove the SymPy's core, that is

not used at this point. Tests must still pass, since we didn't
change any results from the previous step.



SymPy, SymEngine and SymEngine.py

Speeding Up - Current Approach

» Define a file backend.py in SymPy's core, for providing
optional support of SymEngine’s routines through USE flags.

USE_SYMENGINE = os.getenv(’USE_SYMENGINE’, ’0’)
USE_SYMENGINE = USE_SYMENGINE.lower ()
in (°1°, ’t’, ’true’)
if USE_SYMENGINE:
from symengine import ...
else:

from sympy import

» Shift all the viable imports used in a particular module of
interest to import from backend.py
sympy/liealgebras/weyl_group.py
from sympy.core.backend import Matrix, eye ..



SymPy, SymEngine and SymEngine.py

Speeding Up - Current Approach

» Hence, SymEngine's routines are directly used for backend
computations whenever the USE flag is set.

» As such, no SymPy->SymEngine->SymPy conversion cycle is
required, leading to maximum performance improvement and
minimal changes.

» When the USE flag is unset, routines are imported from
SymPy core itself.



Sage, SymEngine and SymEngine.py

Using SymEngine in Sage

» Every particular class in SymEngine.py, having a corresponding
data type in Sage, has a callable _sage_() sub-routine.

» Hence the conversion of SymEngine objects to Sage
compatible type is handled through the above sub-routine
itself.

assert Integer(12)._sage_() == sage.Integer(12)

» Additionally, every particular class also has a callable
_sympy_() sub-routine, for converting objects to SymPy
specific types, which is accessed through sympify function.
This allows us to do the following:

assert Integer(12) == sympify(sage.Integer(12))



PyDy, SymEngine and SymEngine.py

Using SymEngine in PyDy

» PyDy, short for Python Dynamics, is a tool kit written in the
Python programming language to enable the study of
multibody dynamics.

» Directly uses the APIls of SymPy’s mechanics module which
currently has the optional SymEngine usage option, keeping
the code-related changes minimal.

» Hence, the idea here is to use SymEngine in the same way as
used by many SymPy modules, through optional flags and
shifting the following imports:

from sympy import symbols ...
to
from sympy.core.backend import symbols ...



Benchmarks

Benchmark setup

Benchmarks were run in a Intel(R) Core(TM) i5-5200U CPU @
2.20GHz running Ubuntu 16.04 with gcc 5.4.0

» SymEngine master (with GMP and FLINT)
GiNaC 1.6.6

SymPy 1.0

Mathematica 10.2.0.0

Maple 2015.2

v

v

v

v



Benchmarks
Expand Benchmark

v

v

v

e=(x+y+z+w)
f=ex(e+w)
Measure time taken for expanding f

using SymEngine
using Timelt

Qvars x y z w

n = 30
e=(x+y+z+wn
f=ex*x (e +w
@timeit expand(f)



Benchmarks
Expand Benchmark

Benchmark expand?2

102 4
101 p
0

10° 5 —e— SymEngine
- —e— GiNaC
‘ﬂ—m)' 10 —8— Mathematica
£ 10-2 1 ~0— SymPy
= —o— Maple

1073 4 —e— Piranha

10—4 p

10—5 p

4 5 6 7 8 91(')1 20 30 40 50



Benchmarks
Modified GiNaC Benchmark

> Let e be the expanded sum of 2 symbols {ag, a;} and n — 2
trigonometric functions {sin(az), sin(a3)...sin(ap—1)} squared:
e « (ao + a1 + 215 sin(a;))?

> Substitute ag < — Y7~ sin(a;)

» Expand e again so it collapses to a?



Benchmarks
Modified GiNaC Benchmark

from symengine import symbols, sin

from time import clock

n = 100

a0, al = symbols("a0, al")

t = sum([sin(symbols("a%s" % i)) for i in range(2, n)])
e=a0 +al +t

f=-t

t1 = clock()

(ex*2) .expand ()
e.xreplace({a0: £f})
e.expand()

t2 = clock()



Benchmarks
Modified GiNaC Benchmark

Benchmark expandéb

102 § Pal
10! 4
—8— SymeEngine
) —e— GiNaC
g —&— Mathematica
F 100 4 SymPy
—&— Maple
107! 4
90102 200 300 400 500 60070080(®0Q 03

N



Benchmarks
SymEngine Benchmark

» Series expansion of sin(cos(x + 1)) around x =0

» RCP<const Symbol> x
int n = 15;
RCP<const Basic> ex = sin(cos(add(integer(1l), x)));
auto tl = std::chrono::high_resolution_clock: :now();
RCP<const Basic> res = series(ex, x, n);
auto t2 = std::chrono::high_resolution_clock: :now();

symbol ("x");



Benchmarks
SymEngine Benchmark

Benchmark symengine_bench

102
101 B
100 4
—e— SymEngine
7 107" 5 —e— GiNaC
“E) , —8— Mathematica
£ 1073 ~o— SymPy
—8— Maple
1073 4
1074 4
10—5 B

9 10 20 30 40



Benchmarks
PyDy Benchmark

1y

qo0 |



Benchmarks
PyDy Benchmark

n ‘ SymEngine + SymPy ‘ SymPy only ‘ Speedup

10 0.17 s 5.58 s 32.8x
15 0.44 s 22.07 s 50.1x
20 0.95 s 45.59 s 47.9x
30 3.11s 162.80 s 52.3x
40 7.02 s 427.16 s 60.8x
50 13.95 s 915.83 s 65.6x
60 23.16 s 1596.37 s 68.9x

Table: Results



Benchmarks
PyDy Benchmark

Benchmark pydy

100 4

10—1 4
'E .
o —e— SymEngine
£ 10-2 Sympy
E 10

1073 4

9 10t 20 30 40 50 60



Summary

» SymEngine aims to be the fastest C++ symbolic
manipulation library

» Thin wrappers to other languages (Python, Ruby, Julia, C and
Haskell)

» Easily usable as an optional backend in SymPy, Sage and
PyDy



Thank You

GitHub:
» https://github.com/symengine/symengine
» https://github.com/symengine/symengine.py
» https://github.com/symengine/symengine.rb
» https://github.com/symengine/symengine.j|
» https://github.com/symengine/symengine.hs
Mailinglist:
» http://groups.google.com/group/symengine
Gitter:
> https://gitter.im/symengine/symengine


https://github.com/symengine/symengine
https://github.com/symengine/symengine.py
https://github.com/symengine/symengine.rb
https://github.com/symengine/symengine.jl
https://github.com/symengine/symengine.hs
http://groups.google.com/group/symengine
https://gitter.im/symengine/symengine

