
 © Ritu Chawla Mehra

Multi-Threading: The Unknown Truth of Python

 My Bio: Senior Python Developer at Xoriant Solutions, Mumbai with 9+ years of experience in
Embedded, Mobile and Web Applications. Have years of implementation experience on various
Python Modules, Libraries and Tools.

 Proposal Type (Category): About experiences and usage of Python and Python-based tools and
libraries for research or teaching.

 Technical Level: Intermediate

 Pre-Requisites: Knowledge of Python Language (2.7 and above), Understanding of Threads and
Cores.

 Abstract:

Performance is one of the most important aspects of any application.
But “How to achieve it” is an “Answer” we look for. This is where “Multi-Threading” comes into
picture.
Like any other language, Python also supports Multi-Threading “but” before you consider this
feature to achieve improved performance of your application “Think Twice”, yes you read it right
“Think Thrice” and WHY is what I will be explaining in my Proposal/Paper/Presentation.

Outline:

1. What will you learn from this Proposal:

 The “Concurrency Concept” and its relation to Multi-Threading.
 The “GIL” – Global Interpreter Lock concept and the mystery behind it.
 How GIL limits thread performance.
 “Where” and “Why” not to use Multi-Threading – The hidden truth of Python Multi-

Threading.
 What is an alternative to it? – A brief overview of “Multi-Processing”

2. Why do you need to know this:

 Will help you in : “Decision making” , “Time Saving” , “Low Project Cost” , “Project
Performance” and “HOW” - Next time when you consider Multi-Threading as an
option for improving system performance , you know beforehand exactly why / why
not to use it.

3. The Case Study - CPU Bound and I/O bound task

 How CPU bound task effects performance
 How I/O bound task improves performance

4. The Real Life Project Implementation:

CPU Bound and I/O bound task (one for each) - I will show you how in our project we
improved application performance by over 30-40% (Approximately)

 A sample implementation using “threading” module

 © Ritu Chawla Mehra

 Time comparison using 1 and multiple threads.
 Details:

 Multithreaded Application to download the huge historical data files (csv format in
GB’s) from a website, read the files, do some slicing and dicing on the data and dump in
the database.

 Analysis Processing Time:
o When the multithreaded code had only download functionality implemented

(I/O Task):
 Single Thread : 15 Seconds
 3 Threads : 9 Seconds

o When the multithreaded code had data processing/formatting functionality
(CPU Bound Task) along with download functionality implemented (I/O Task):

 Single Thread : 15 Seconds
 3 Threads : 30 Seconds

5. The before and after situation:

 How the same code takes more time when made multi-threaded.

6. The “Common Mistakes” People make and how it can be avoided.
 Explanation to the common mistakes made in problem identification while making

an application Multi-Threaded and how to avoid it.

7. Q&A

